Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(6)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38516885

RESUMO

CD4+Foxp3+ regulatory T cells (Tregs) play an essential role in suppressing transplant rejection, but their role within the graft and heterogeneity in tolerance are poorly understood. Here, we compared phenotypic and transcriptomic characteristics of Treg populations within lymphoid organs and grafts in an islet xenotransplant model of tolerance. We showed Tregs were essential for tolerance induction and maintenance. Tregs demonstrated heterogeneity within the graft and lymphoid organs of tolerant mice. A subpopulation of CD127hi Tregs with memory features were found in lymphoid organs, presented in high proportions within long-surviving islet grafts, and had a transcriptomic and phenotypic profile similar to tissue Tregs. Importantly, these memory-like CD127hi Tregs were better able to prevent rejection by effector T cells, after adoptive transfer into secondary Rag-/- hosts, than naive Tregs or unselected Tregs from tolerant mice. Administration of IL-7 to the CD127hi Treg subset was associated with a strong activation of phosphorylation of STAT5. We proposed that memory-like CD127hi Tregs developed within the draining lymph node and underwent further genetic reprogramming within the graft toward a phenotype that had shared characteristics with other tissue or tumor Tregs. These findings suggested that engineering Tregs with these characteristics either in vivo or for adoptive transfer could enhance transplant tolerance.


Assuntos
Linfócitos T Reguladores , Tolerância ao Transplante , Animais , Camundongos , Fatores de Transcrição Forkhead , Rejeição de Enxerto/prevenção & controle , Tolerância Imunológica , Linfócitos T CD4-Positivos , Subunidade alfa de Receptor de Interleucina-7
2.
Sci Adv ; 9(24): eadf3120, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327346

RESUMO

Human cord blood-derived γδ T cells (CBγδ) display a highly diverse TCRγδ repertoire and have a unique subtype composition different from fetal or adult peripheral blood counterparts. We expanded CBγδ in vitro using an irradiated Epstein-Barr virus-transformed feeder cell-based modified rapid expansion protocol (REP). Single-cell RNA sequencing tracked progressive differentiation of naïve CBγδ into cells expressing neoantigen-reactive tumor-infiltrating lymphocyte as well as tissue-resident memory precursor-like and antigen-presenting cell-like gene signatures. TCRγδ clonal tracing revealed a bias toward cytotoxic effector differentiation in a much larger proportion of Vδ2- clones compared to Vδ2+ clones, resulting in the former being more cytotoxic at the population level. These clonotype-specific differentiation dynamics were not restricted to REP and were recapitulated upon secondary nonviral antigen stimulations. Thus, our data showed intrinsic cellular differences between major subtypes of human γδ T cells already in operation at early postnatal stage and highlighted key areas of consideration in optimizing cell manufacturing processes.


Assuntos
Infecções por Vírus Epstein-Barr , Linfócitos T , Adulto , Humanos , Sangue Fetal , Herpesvirus Humano 4 , Receptores de Antígenos de Linfócitos T gama-delta/genética
3.
Methods Protoc ; 6(2)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104017

RESUMO

Increasing evidence strongly supports the key role of the tumour microenvironment in response to systemic therapy, particularly immune checkpoint inhibitors (ICIs). The tumour microenvironment is a complex tapestry of immune cells, some of which can suppress T-cell immunity to negatively impact ICI therapy. The immune component of the tumour microenvironment, although poorly understood, has the potential to reveal novel insights that can impact the efficacy and safety of ICI therapy. Successful identification and validation of these factors using cutting-edge spatial and single-cell technologies may enable the development of broad acting adjunct therapies as well as personalised cancer immunotherapies in the near future. In this paper we describe a protocol built upon Visium (10x Genomics) spatial transcriptomics to map and characterise the tumour-infiltrating immune microenvironment in malignant pleural mesothelioma. Using ImSig tumour-specific immune cell gene signatures and BayesSpace Bayesian statistical methodology, we were able to significantly improve immune cell identification and spatial resolution, respectively, improving our ability to analyse immune cell interactions within the tumour microenvironment.

4.
Chem Sci ; 14(7): 1775-1780, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36819869

RESUMO

Sulfur(vi) fluoride exchange chemistry has been reported to be effective at synthesizing valuable sulfur(vi) functionalities through sequential nucleophilic additions, yet oxygen-based nucleophiles are limited in this approach to phenolic derivatives. Herein, we report a new sulfur(iv) fluoride exchange strategy to access synthetically challenging substituted sulfamate esters from alkyl alcohols and amines. We also report the development of a non-gaseous, sulfur(iv) fluoride exchange reagent, N-methylimidazolium sulfinyl fluoride hexafluorophosphate (MISF). By leveraging the reactivity of the sulfur(iv) center of this novel reagent, the sequential addition of alcohols and amines to MISF followed by oxidation afforded the desired substituted sulfamates in 40-83% yields after two steps. This new strategy expands the scope of SuFEx chemistry by increasing the accessibility of underdeveloped -S(O)F intermediates for future explorations.

5.
Front Microbiol ; 11: 1875, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849459

RESUMO

The production of endogenous hydrogen sulfide (H2S) has been shown to confer antibiotic tolerance in all bacteria studied to date. Therefore, this mediator has been speculated to be a universal defense mechanism against antibiotics in bacteria. This is assuming that all bacteria produce endogenous H2S. In this study, we established that the pathogenic bacteria Acinetobacter baumannii does not produce endogenous H2S, giving us the opportunity to test the effect of exogenous H2S on antibiotic tolerance in a bacterium that does not produce it. By using a H2S-releasing compound to modulate the sulfide content in A. baumannii, we demonstrated that instead of conferring antibiotic tolerance, exogenous H2S sensitized A. baumannii to multiple antibiotic classes, and was able to revert acquired resistance to gentamicin. Exogenous H2S triggered a perturbation of redox and energy homeostasis that translated into hypersensitivity to antibiotic killing. We propose that H2S could be used as an antibiotic-potentiator and resistance-reversion agent in bacteria that do not produce it.

6.
Biol Blood Marrow Transplant ; 24(5): 1069-1078, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29305193

RESUMO

Current techniques to assess chimerism after hematopoietic stem cell transplantation (HSCT) are limited in both sensitivity and precision. These drawbacks are problematic in the context of cellular therapies that frequently result in microchimerism (donor chimerism <1%). We have developed a highly sensitive droplet digital PCR (ddPCR) assay using commercially available regents with good performance throughout the range of clinically relevant chimerism measurements, including microchimerism. We tested the assay using spiked samples of known donor-recipient ratios and in clinical samples from HSCT recipients and patients enrolled on clinical trials of microtransplantation and third-party virus-specific T cells (VSTs). The levels of detection and quantification of the assay were .008% and .023%, with high levels of precision with samples of DNA content ranging from 1 to 300 ng DNA. From the panel of 29 insertion-deletion probes multiple informative markers were found for each of 43 HSCT donor-recipient pairs. In the case of third-party cellular therapies in which there were 3 DNA contributors (recipient, HSCT donor, and T-cell donor), a marker to detect the cellular product in a background of recipient and donor cells was available for 11 of 12 cases (92%). Chimerism by ddPCR was able to quantify chimerism in HSCT recipients and comparison against standard STR analysis in 8 HSCT patients demonstrated similar results, with the advantage of fast turnaround time. Persistence of donor microchimerism in patients undergoing microtransplantation for acute myeloid leukemia was detectable for up to 57 days in peripheral blood and bone marrow. The presence of microtransplant product DNA in bone marrow T cells after cell sorting was seen in the 1 patient tested. In patients receiving third-party VSTs for treatment of refractory viral infections, VST donor DNA was detected at low levels in 7 of 9 cases. ddPCR offers advantages over currently available methods for assessment of chimerism in standard HSCT and cellular therapies.


Assuntos
Bioensaio/métodos , Quimerismo , Reação em Cadeia da Polimerase/métodos , Quimeras de Transplante/genética , Terapia Baseada em Transplante de Células e Tecidos , DNA/análise , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco Hematopoéticas/normas , Humanos , Métodos
7.
J Virol ; 90(4): 2102-11, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26656703

RESUMO

UNLABELLED: The alphaherpesviral envelope protein pUS9 has been shown to play a role in the anterograde axonal transport of herpes simplex virus 1 (HSV-1), yet the molecular mechanism is unknown. To address this, we used an in vitro pulldown assay to define a series of five arginine residues within the conserved pUS9 basic domain that were essential for binding the molecular motor kinesin-1. The mutation of these pUS9 arginine residues to asparagine blocked the binding of both recombinant and native kinesin-1. We next generated HSV-1 with the same pUS9 arginine residues mutated to asparagine (HSV-1pUS9KBDM) and then restored them being to arginine (HSV-1pUS9KBDR). The two mutated viruses were analyzed initially in a zosteriform model of recurrent cutaneous infection. The primary skin lesion scores were identical in severity and kinetics, and there were no differences in viral load at dorsal root ganglionic (DRG) neurons at day 4 postinfection (p.i.) for both viruses. In contrast, HSV-1pUS9KBDM showed a partial reduction in secondary skin lesions at day 8 p.i. compared to the level for HSV-1pUS9KBDR. The use of rat DRG neuronal cultures in a microfluidic chamber system showed both a reduction in anterograde axonal transport and spread from axons to nonneuronal cells for HSV-1pUS9KBDM. Therefore, the basic domain of pUS9 contributes to anterograde axonal transport and spread of HSV-1 from neurons to the skin through recruitment of kinesin-1. IMPORTANCE: Herpes simplex virus 1 and 2 cause genital herpes, blindness, encephalitis, and occasionally neonatal deaths. There is also increasing evidence that sexually transmitted genital herpes increases HIV acquisition, and the reactivation of HSV increases HIV replication and transmission. New antiviral strategies are required to control resistant viruses and to block HSV spread, thereby reducing HIV acquisition and transmission. These aims will be facilitated through understanding how HSV is transported down nerves and into skin. In this study, we have defined how a key viral protein plays a role in both axonal transport and spread of the virus from nerve cells to the skin.


Assuntos
Transporte Axonal , Herpesvirus Humano 1/fisiologia , Interações Hospedeiro-Patógeno , Cinesinas/metabolismo , Lipoproteínas/metabolismo , Neurônios/virologia , Fosfoproteínas/metabolismo , Proteínas Virais/metabolismo , Liberação de Vírus , Sequência de Aminoácidos , Animais , Sítios de Ligação , Técnicas Citológicas , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Gânglios Espinais/virologia , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lipoproteínas/genética , Camundongos Endogâmicos C57BL , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfoproteínas/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Ratos Wistar , Índice de Gravidade de Doença , Pele/patologia , Pele/virologia , Carga Viral , Proteínas Virais/genética
8.
J Immunol ; 193(5): 2554-64, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25070850

RESUMO

Epidermal Langerhans cells (eLCs) uniquely express the C-type lectin receptor langerin in addition to the HIV entry receptors CD4 and CCR5. They are among the first target cells to encounter HIV in the anogenital stratified squamous mucosa during sexual transmission. Previous reports on the mechanism of HIV transfer to T cells and the role of langerin have been contradictory. In this study, we examined HIV replication and langerin-mediated viral transfer by authentic immature eLCs and model Mutz-3 LCs. eLCs were productively infected with HIV, whereas Mutz-3 LCs were not susceptible because of a lack of CCR5 expression. Two successive phases of HIV viral transfer to T cells via cave/vesicular trafficking and de novo replication were observed with eLCs as previously described in monocyte-derived or blood dendritic cells, but only first phase transfer was observed with Mutz-3 LCs. Langerin was expressed as trimers after cross-linking on the cell surface of Mutz-3 LCs and in this form preferentially bound HIV envelope protein gp140 and whole HIV particles via the carbohydrate recognition domain (CRD). Both phases of HIV transfer from eLCs to T cells were inhibited when eLCs were pretreated with a mAb to langerin CRD or when HIV was pretreated with a soluble langerin trimeric extracellular domain or by a CRD homolog. However, the langerin homolog did not inhibit direct HIV infection of T cells. These two novel soluble langerin inhibitors could be developed to prevent HIV uptake, infection, and subsequent transfer to T cells during early stages of infection.


Assuntos
Antígenos CD/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Células de Langerhans/imunologia , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/imunologia , Linfócitos T/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Transporte Biológico/imunologia , Infecções por HIV/patologia , Humanos , Células de Langerhans/patologia , Células de Langerhans/virologia , Lectinas Tipo C/antagonistas & inibidores , Lectinas de Ligação a Manose/antagonistas & inibidores , Linfócitos T/patologia , Linfócitos T/virologia , Replicação Viral
9.
Adv Exp Med Biol ; 762: 1-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22975870

RESUMO

Recent progress in phenotyping of human dendritic cells (DCs) has allowed a closer alignment of the classification and functions of murine and human dendritic cell subsets. Marked differences in the functions of these human DC subsets and their response to HIV infection have become apparent, relevant to HIV pathogenesis and vaccine and microbicide development. Systems biology approaches to studying HIV uptake and infection of dendritic cells has revealed how markedly HIV subverts their functions, especially in relation to the trafficking pathways and viral transfer to T cells. Furthermore the interactions between DCs and other innate immune cells, NK cells, NKT cells and gamma delta T cells are now known to influence DC and T cell function and are also disturbed by HIV infection in vitro and in vivo. Such cellular interactions are potential targets for vaccine adjuvants and immunotherapy.


Assuntos
Células Dendríticas/imunologia , Infecções por HIV/imunologia , Células Dendríticas/metabolismo , Humanos , Imunidade Inata , Transcrição Gênica
10.
Blood ; 118(2): 298-308, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21411754

RESUMO

Many viruses have developed mechanisms to evade the IFN response. Here, HIV-1 was shown to induce a distinct subset of IFN-stimulated genes (ISGs) in monocyte-derived dendritic cells (DCs), without detectable type I or II IFN. These ISGs all contained an IFN regulatory factor 1 (IRF-1) binding site in their promoters, and their expression was shown to be driven by IRF-1, indicating this subset was induced directly by viral infection by IRF-1. IRF-1 and -7 protein expression was enriched in HIV p24 antigen-positive DCs. A HIV deletion mutant with the IRF-1 binding site deleted from the long terminal repeat showed reduced growth kinetics. Early and persistent induction of IRF-1 was coupled with sequential transient up-regulation of its 2 inhibitors, IRF-8, followed by IRF-2, suggesting a mechanism for IFN inhibition. HIV-1 mutants with Vpr deleted induced IFN, showing that Vpr is inhibitory. However, HIV IFN inhibition was mediated by failure of IRF-3 activation rather than by its degradation, as in T cells. In contrast, herpes simplex virus type 2 markedly induced IFNß and a broader range of ISGs to higher levels, supporting the hypothesis that HIV-1 specifically manipulates the induction of IFN and ISGs to enhance its noncytopathic replication in DCs.


Assuntos
Células Dendríticas/virologia , Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/fisiologia , Fator Regulador 1 de Interferon/fisiologia , Interferon Tipo I/metabolismo , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Regulação para Baixo/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Humanos , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Análise em Microsséries , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia , Regulação para Cima/genética , Regulação para Cima/imunologia
11.
J Biol Chem ; 284(17): 11027-38, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19224860

RESUMO

C-type lectin receptors expressed on the surface of dendritic cells and macrophages are able to bind glycoproteins of microbial pathogens via mannose, fucose, and N-acetylglucosamine. Langerin on Langerhans cells, dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin on dendritic cells, and mannose receptor (MR) on dendritic cells and macrophages bind the human immunodeficiency virus (HIV) envelope protein gp120 principally via high mannose oligosaccharides. These C-type lectin receptors can also oligomerize to facilitate enhanced ligand binding. This study examined the effect of oligomerization of MR on its ability to bind to mannan, monomeric gp120, native trimeric gp140, and HIV type 1 BaL. Mass spectrometry analysis of cross-linked MR showed homodimerization on the surface of primary monocyte-derived dendritic cells and macrophages. Both monomeric and dimeric MR were precipitated by mannan, but only the dimeric form was co-immunoprecipitated by gp120. These results were confirmed independently by flow cytometry analysis of soluble monomeric and trimeric HIV envelope and a cellular HIV virion capture assay. As expected, mannan bound to the carbohydrate recognition domains of MR dimers mostly in a calcium-dependent fashion. Unexpectedly, gp120-mediated binding of HIV to dimers on MR-transfected Rat-6 cells and macrophages was not calcium-dependent, was only partially blocked by mannan, and was also partially inhibited by N-acetylgalactosamine 4-sulfate. Thus gp120-mediated HIV binding occurs via the calcium-dependent, non-calcium-dependent carbohydrate recognition domains and the cysteine-rich domain at the C terminus of MR dimers, presenting a much broader target for potential inhibitors of gp120-MR binding.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Lectinas Tipo C/química , Macrófagos/metabolismo , Lectinas de Ligação a Manose/química , Oligossacarídeos/metabolismo , Receptores de Superfície Celular/química , Acetilgalactosamina/metabolismo , Animais , Cálcio/metabolismo , Reagentes de Ligações Cruzadas/química , Cisteína/metabolismo , Dimerização , Citometria de Fluxo , Humanos , Células de Langerhans/metabolismo , Células de Langerhans/virologia , Lectinas Tipo C/metabolismo , Macrófagos/virologia , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Ratos , Receptores de Superfície Celular/metabolismo
12.
J Immunol ; 177(10): 7103-13, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17082627

RESUMO

In HIV infection, dendritic cells (DCs) may play multiple roles, probably including initial HIV uptake in the anogenital mucosa, transport to lymph nodes, and subsequent transfer to T cells. The effects of HIV-1 on DC maturation are controversial, with several recent conflicting reports in the literature. In this study, microarray studies, confirmed by real-time PCR, demonstrated that the genes encoding DC surface maturation markers were among the most differentially expressed in monocyte-derived dendritic cells (MDDCs), derived from human blood, treated with live or aldrithriol-2-inactivated HIV-1(BaL). These effects translated to enhanced cell surface expression of these proteins but differential expression of maturation markers was only partial compared with the effects of a conventional potent maturation stimulus. Such partially mature MDDCs can be converted to fully mature cells by this same potent stimulus. Furthermore, live HIV-1 stimulated greater changes in maturation marker surface expression than aldrithriol-2-inactivated HIV-1 and this enhanced stimulation by live HIV-1 was mediated via CCR5, thus suggesting both viral replication-dependent and -independent mechanisms. These partially mature MDDCs demonstrated enhanced CCR7-mediated migration and are also able to stimulate interacting T cells in a MLR, suggesting DCs harboring HIV-1 might prepare CD4 lymphocytes for transfer of HIV-1. Increased maturation marker surface expression was also demonstrated in native DCs, ex vivo Langerhans cells derived from human skin. Thus, HIV initiates maturation of DCs which could facilitate subsequent enhanced transfer to T cells.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/virologia , HIV-1/imunologia , Células de Langerhans/citologia , Células de Langerhans/virologia , Anticorpos Bloqueadores/fisiologia , Diferenciação Celular/genética , Quimiocina CCL21 , Quimiocinas CC/química , Quimiocinas CC/fisiologia , Quimiotaxia de Leucócito/imunologia , Regulação Viral da Expressão Gênica , Marcadores Genéticos , Inibidores do Crescimento/fisiologia , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Monócitos/imunologia , Monócitos/virologia , Receptores CCR5/imunologia , Ativação Viral/genética , Ativação Viral/imunologia
13.
J Biol Chem ; 279(50): 51828-35, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15385553

RESUMO

DC-SIGN (dendritic cell specific intracellular adhesion molecule 3 grabbing non-integrin) or CD209 is a type II transmembrane protein and one of several C-type lectin receptors expressed by dendritic cell subsets, which bind to high mannose glycoproteins promoting their endocytosis and potential degradation. DC-SIGN also mediates attachment of HIV to dendritic cells and binding to this receptor can subsequently lead to endocytosis or enhancement of CD4/CCR5-dependent infection. The latter was proposed to be facilitated by an interaction between DC-SIGN and CD4. Endocytosis of HIV virions does not necessarily lead to their complete degradation. A proportion of the virions remain infective and can be later presented to T cells mediating their infection in trans. Previously, the extracellular domain of recombinant DC-SIGN has been shown to assemble as tetramers and in the current study we use a short range covalent cross-linker and show that DC-SIGN exists as tetramers on the surface of immature monocyte-derived dendritic cells. There was no evidence of direct binding between DC-SIGN and CD4 either by cross-linking or by fluorescence resonance energy transfer measurements suggesting that there is no constitutive association of the majority of these proteins in the membrane. Importantly we also show that the tetrameric complexes, in contrast to DC-SIGN monomers, bind with high affinity to high mannose glycoproteins such as mannan or HIV gp120 suggesting that such an assembly is required for high affinity binding of glycoproteins to DC-SIGN, providing the first direct evidence that DC-SIGN tetramers are essential for high affinity interactions with pathogens like HIV.


Assuntos
Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Células Dendríticas/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD4/metabolismo , Linhagem Celular , Reagentes de Ligações Cruzadas , Transferência Ressonante de Energia de Fluorescência , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Imunoprecipitação , Técnicas In Vitro , Ligantes , Mananas/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Proteômica , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...